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Abstract—A glucose-insulin system regulates the blood
glucose in the human body to a safe level. This system can
become impaired, requiring the need for exogenous insulin
delivery. Such an insulin delivery device must be robust
to unpredictable disturbance signals. To achieve a robust
insulin delivery control system, we design a proportional-
integral (PI) controller with state estimation to regulate
the blood glucose to 100 mg/dL. A linear approximation of
the nonlinear glucose-insulin dynamics is used to find poles
for tuning the PI controller. Poles are placed by selecting
a time-constant and damping ratio. The stability margins
for pole placement are determined from an analysis of
the control system’s open-loop gain Nyquist plot. A meal
disturbance signal is also designed to test the robustness
and physiological realism of the control system.

I. GLUCOSE-INSULIN MODEL

The following represents the simplified glucose-
insulin model for a three-dimensional dynamical system,

dG(t)

dt
= −p1(G(t)−Gb)−X(t)G(t) +D(t) (1)

dX(t)

dt
= −p2X(t) + p3(I(t)− Ib) (2)

dI(t)

dt
= −nI(t) + u(t) (3)

Here,
• G(t) is the blood glucose concentration (mg/dL).
• X(t) is the plasma insulin concentration (mU/dL).
• X(t) is the insulin action.
• Gb is the baseline glucose concentration (mg/dL).
• Ib is the baseline plasma insulin concentration

(mU/L).
• p1, p2, p3 are the system parameters describing in-

sulin sensitivity and glucose dynamics.
• u(t) is the exogenous insulin delivery rate

(mU/min).
• D(t) is the rate of glucose influx from meals

(mg/dL/min).
In this analysis, we seek to regulate insulin delivery

to a patient by designing a proportional-integral (PI)
controller with observer input. The desired value to
regulate to is Gref = 100 mg/dL. The reading from a
glucose sensor is the only measurement available to the

insulin delivery device, thus the output of the model
is defined as y(t) = G(t). Additionally, the patient is
assumed to have the following parameter values within
an uncertainty of 15%,

• p1 = 0.03 min−1

• p2 = 0.02 min−1

• p3 = 0.01 min−1

• n = 0.1 min−1

• Gb = 100 mg/dL
• Ib = 10 mU/L
Alterations to the disturbance function D(t) and

variance of the parameters within the uncertainty will
provide an analysis for the robustness of the designed
PI control law. It is worth noting that we make the
assumption I(0) = 0, or rather that the patient was in
diabetic ketoacidosis immediately prior to being hooked
into our system.

II. DYNAMICS ANALYSIS

A. MATLAB Simulation

Figure 1 contains a MATLAB simulation of the un-
controlled glucose-insulin model time response.

Fig. 1: Uncontrolled time response of G(t), X(t), and
I(t). Note that the glucose concentration is simulated
on a semi-log plot.



In Fig. 1, the glucose concentration is shown to
exponentially increase. This behavior is a product of the
simplified mathematical model. While glucose will still
release due to the stored sugar in the body, in reality,
when not consuming meals, the glucose concentration
will not increase this quickly nor reach this level of
concentration [1]. As expected, the insulin remains con-
stant since the patient is unable to produce insulin. Also
as expected, the negative insulin action stimulates the
production of glucose in the body.

B. Characterization of Equilibria

Controller design for the nonlinear system is not
straight forward so we instead choose to design a con-
troller based on a Jacobian linearization of the system.
The equilibrium point of the undisturbed, uncontrolled
glucose-insulin system can be found by determining
G(t), X(t), and I(t) where the rate of change is zero.
We first define the following state variable,

z(t) =

G(t)
X(t)
I(t)

 (4)

Then, setting the rates of change to zero, we find:

G(t) =
Gbp1

p1 − Ibp3

p2

ż = 0 ⇒ X(t) =
−Ibp3
p2

I(t) = 0

A closer inspection of this equilibrium point exposes a
potential problem. Not only is the glucose-concentration
quite far from the baseline value, it is also negative. An
evaluation without regard for uncertainty yields G(t) =
−0.604 mg/dL. The patient may be dissatisfied with a
negative glucose concentration. We instead choose to
perform the Jacobian linearization around the baseline.
The baseline is the point where G(t) = Gb, X(t) = 0,
and I(t) = Ib. Substituting these values into the glucose-
insulin model shows that this point is also an equilibrium
of the system. Thus, linearizing around this point should
provide a more realistic model to design the control law
around.

C. Linear Approximation

From the Jacobian of the nonlinear model we find,

J =

 ∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

 =
(−X−p1 −G 0

0 −p2 p3

0 0 n

)
(5)

We define the equilibrium point to be linearized
around as,

zeq =

Gb

0
Ib

 (6)

Substituting the values of zeq into the Jacobian, we
find,

A = J(ż)

∣∣∣∣
zeq

=

−p1 −Gb 0
0 −p2 p3
0 0 −n

 (7)

(8)

The linearized model is then complete with,

B =

0
0
1

 , C =
(
1 0 0

)
(9)

To determine the efficacy of designing a control
strategy for this model, we examine the controllability
and observability. Firstly, for the controllability of the
system, the controllability matrix WC is found to be,

WC =
(
B AB A2B

)
=

0 0 −Gbp3
0 0 −np3 − p2p3
1 −n n2


Aside from edge cases beyond the uncertainty of the

provided parameters, WC is clearly defined by three lin-
early independent columns thus having rank(WC) = 3.
Thus, the linearized model is controllable. Similarly, the
observability matrix WO is found to be,

WO =

 C
CA
CA2

 =

 1 0 0
−p− 1 −Gb 0

p21 Gbp1 +Gbp2 −Gbp3


Similarly, aside from edge cases beyond the uncer-

tainty of the provided parameters, WO has rank(WO) =
3 and the linearized model is thus observable. We may
now continue on towards the design of a PI controller
with state estimation.

III. PI CONTROLLER DESIGN

A. Control Law Definition

The PI control law we seek to implement for the
exogenous insulin delivery rate, is defined as,

u(t) = −KT
p ẑ −Ki

∫ t

0

(
Gref − Ĝ(τ)

)
dτ (10)



where,

ẑ =

Ĝ

X̂

Î

 (11)

and Ĝ(t), X̂(t), and Î(t) are the estimated states for
G(t), X(t), and I(t) respectively. Additionally, Kp is the
proportional gain and Ki is the integral gain. The propor-
tional control law was chosen as a means to respond to
immediate deviations in the blood glucose concentration.
The proportional control, while fast, may lead to large
steady-state errors. To compensate, integral control was
chosen to account for past errors and to mitigate the
steady-state error accumulation, thus ensuring that the
control law regulates to Gref over time. Additionally,
the implementation of an observer allows for estimation
of quantities that are hard to measure, such as X(t).
Since state estimates are extracted from the nonlinear
system, the observer is also able to compensate for
oversimplifications due to the linear approximation.

B. Controller & Observer Gains

The approximate LTI model is defined as,

ż = Az +Bu (12)
y = Cz (13)

To solve for the controller gains, an additional state is
defined for the integrator term,

m(t) =

∫ t

0

(
Gref − Ĝ(τ)

)
dτ (14)

The state estimation error, e, is defined as,

e = z − ẑ (15)

We then implement a Luenberger observer,

ė = Az +Bu−Aẑ − L(y − ŷ) (16)
= (A− LC)e (17)

where, L is the observer gain. The dynamics of the
system can then be rewritten as, ż

ṁ
ė

 = Ã

 z
m
e

 (18)

where,

Ã =

(
A−BKT

p BKi 0

−C 0 0

0 0 (A−BKT
p +BKi−LC)

)
(19)

The controller gains Kp, Ki, and L, are then found
by selecting poles and solving for the controller gains
in the characteristic polynomial of Ã [2]. Tuning pole
placement is further described in Sec. III-C.

C. Pole Placement

To determine where exactly we wanted to place our
eigenvalues (and thus the poles), we utilized two classic
controls principles. Namely, time-constants and damping
factors. Recall the time-constant of a LTI system is
defined as:

T = maxλi, i∈[0,n]
−5

ℜ|λi|
(20)

Rearranging this allows us to decide upon a desired
time-constant, and determine the real component of the
eigenvalues which achieve it:

ℜ|λi| =
−5

T
(21)

Using this method allows us to define the time period
over which our correction should take effect, but to
gain some control over how it gets there (i.e. determine
overshooting / undershooting) we need to introduce a
damping constant. To justify this, we consider a typical
second order dynamical system defined as:

ẍ+ 2ζωnẋ+ ω2
nx = 0 (22)

This system has the very useful property that both
its transient and steady-state behavior can be completely
characterized from its eigenvalues, which are given by
the quadratic formula derived from the characteristic
equation of the system:

λ1,2 = −ζωn ± jωn

√
1− ζ2 (23)

where ζ is the damping ratio. From ζ, we can deter-
mine the degree of the oscillatory nature of the system
by comparing to the following three cases:

1) Under-damped (0 < ζ < 1): The eigenval-
ues are complex conjugates, and the system ex-
hibits oscillations with a frequency proportional to
ωn

√
1− ζ2 and an exponential decay governed by

−ζω − n.
2) Critically damped (ζ = 1): The eigenvalues are

real and equal, resulting in a non-oscillatory sys-
tem with the fastest return to equilibrium without
overshooting.

3) Over-damped (ζ > 1): The eigenvalues are distinct
and real, leading to a slower, non-oscillatory return
to equilibrium.

By combining these concepts together, we can use our
pick of time-constant and damping factor to solve for the
natural frequency, ωn:



ℜ|λi| =
−5

T
= −ζωn ⇒ ωn =

5

Tζ
(24)

Then we can simply solve for λ as previously defined.
However, you may notice there are only two eigenvalues
in this approach, yet for our system we need to find
seven! Three for our states G(t), X(t), I(t), one for our
integral action M and three for our observer. To reduce
the complexity of our solution, We decided to define all
seven of our eigenvalues relative to these two simple
second order ones. Specifically, we defined:

λ =



−5
T + ( 5

Tζ

√
1− ζ2)j

−5
T − ( 5

Tζ

√
1− ζ2)j

1.1× λ1

100× λ1

−25.5/T
−26/T
−26.5/T


(25)

Our motivations for this were intentioned and justified.
We matched our first two eigenvalues to that of the
second order system, and scaled our third to be slightly
larger than the first. This effectively reinforces the rise
behavior governed by the original second order system,
whose behavior will arise from the placement of λ1, 2.
Our fourth eigenvalue corresponds to our integral con-
trol, and as such we placed it two orders of magnitude
away from our proportional poles in the LHP with
the intention that it would allow for steady-state error
correction without muddying up the transient. Finally,
we set our observer poles to be roughly 5 times larger
than the real component of our second order system.
We need to ensure the observed states converge faster
than the autonomous system so our feedback is not
overly phase shifted / incorrect (conventional wisdom
is 2-10x [2]). The reason we only chose to scale the
real component and omit the imaginary component is to
hopefully avoid possible resonance / phase interactions
between the observer and true state.

Thus we reduced the task of placing seven poles to
instead fine tuning 2 parameters, T and ζ. We chose T =
20 and ζ = 1.1 for our final controller, for a multitude of
reasons. We knew we wanted an over damped system to
prevent dangerous spikes and dips that may come with an
under-damped system. We also knew that we wanted our
time-constant to be smaller than the expected duration of
the meal disturbance function so that it would have time
to correct before the glucose left the acceptable range.
Since our meal disturbance function has a decay rate of
−2t, we expect meals to continue impacting the glucose
for ≈ 90 minutes. Thus we chose a time constant a little
less than half of that to account for the non-uniform
intensity distribution of the meal. Combining these two

factors led us to our choice of T & ζ, where in order
to ensure our controller acted appropriately to meals the
damping needed to be less than 2 to avoid dangerous
spikes and dips. After we determined our eigenvalues
we utilized MATLAB’s place() function to find our
actual constants Kp,Ki, L:

Kp =

−12.41
3766
36.37


Ki = 1.4576

L =

 3.675
−0.0443
−1.622


To test these gains, we first apply our control law

to the undisturbed model. Figure 2 contains the system
response to the PI controller without disturbances.

Fig. 2: Time response without meal disturbances of
the glucose-insulin dynamics with PI controller and
observer.

In contrast with the uncontrolled model, the glucose
concentration does not exponentially increase. Addition-
ally, the insulin action is only negative at the start. The
integral controller requires time to correctly mitigate the
system response, so the somewhat large integral gain
produces an initial dip in the glucose concentration.



D. Transfer Functions

Analyzing the linear approximation transfer functions
allows for a more tractable evaluation of the loop sta-
bility margins providing a characterization of the insulin
delivery robustness. The plant transfer function for the
LTI system is found as follows,

P (s) =
Y (s)

U(s)
= C(sI −A)−1B (26)

=
−Gbp3

(s+ p1)(s+ p2)(s+ n)
(27)

Where s is the frequency jω and Y (s) and U(s) are
the Laplace transforms of the output and control law.
The controller transfer function is found as,

C(s) =
U(s)

E(s)
= Kp +

Ki

s
(28)

Where E(s) is the Laplace transform of the error
signal. The closed-loop transfer function of the feedback
system is then,

Gcl(s) =
P (s)C(s)

1 + P (s)C(s)
(29)

A pole of the closed-loop system is found when
P (s)C(s) = −1. The open-loop gain of the system L(s)
is then,

L(s) = P (s)C(s) (30)

Analyzing the loop gain L(s) as a function of the input
frequency will allow for a characterization of stability
within the linear approximation of the glucose-insulin
dynamics.

E. Stability

To evaluate the stability of our system, we turned to
the Nyquist stability criterion. By analyzing the Nyquist
plot of our open-loop gain P (s)C(s) we can determine
if the system is stable, and by how much. To elaborate,
we can utilize MATLAB’s margin() function on our
open-loop gain to find both the Phase Margin and Gain
Margin of our model. Recall that the phase-margin is
how much phase shift can enter the system before the
point (−1, 0) is encircled, and that the gain-margin is
the extent to which you can scale your gain (and by
extension how far you “slide” your 0 crossings) before
(−1, 0) is encircled.

The output of margin() is the Bode Plot shown in
Fig. 6, in the appendix. We clearly see an infinite Gain
margin and roughly 170◦ of phase margin. By examining
the Nyquist Diagram in Fig. 3 we can see that since there
are no zero crossings in the LHP, we can scale our gain

Fig. 3: Nyquist plot of Open-Loop Gain

arbitrarily large without impacting stability. Although, in
practical applications this is not fully true, as numerical
instability may arise at extremely large values and the
robustness of the model will be reduced at larger gains.
Though it’s enough, at least to justify our 100x scaling
for the placement of our integral control’s pole. We can
also confirm the phase margin, but first take note of the
axis scaling of 105. If we consider -1 to be at (0, 0), we
can envision how large of a rotation must occur before
there is a line through it. On this graph the “limiting”
line is the “loop-back” on the bottom half plane. If we
were to overlay a unit circle onto the image, the straight
shot intersection would be around 15π

8 . Thus, the phase
margin is how long it takes to get from 15π

8 to π, which
is 7π

8 or 50◦, reasonably close to what MATLAB reports.
Our system should remain stable under most fore-

seeable operating conditions, as it is robust to both
phase and margin shifts. In terms of our actual system
robustness, means we can endure a time delay of up to:

max(Time Delay) =
Phase Margin

Crossover Frequency
(31)

=
7π
8

62

which is ∼0.0476 minutes or 2.856 seconds.

IV. DISTURBANCE SIGNAL

For the model disturbance signal, we attempt to cap-
ture realistic eating habits of a “normal” person. Here,
a “normal” person refers to an individual who has a
consistent sleep schedule and eats approximately the
same number of meals each day at approximately the
same time. This signal would not, for instance, capture
the eating and sleeping habits of an ESE student during
finals week. For the interval from 0 to 12 hours, we
randomly distribute 4 meals. For the interval 12 to 16



hours, we randomly distribute a single meal. Then, no
meals are consumed for 8 hours.

The magnitude of the glucose influx disturbance signal
is a value between 5-20 mg/dL/min. This range is chosen
based on the rate of gastric emptying. The typical rate
of gastric emptying lies between 1-4 kcal/min which is
approximately 0.25-1 g of glucose per minute [1]. For
an average human, with approximately 5 L of blood,
the gastric emptying corresponds to approximately 5–20
mg/dL/min. Choosing a magnitude of 10 mg/dL/min for
each meal, we define,

D(t) =


∑4

i=1 10e
−2(t−ai) t ∈ [0, 12), t ≥ ai

10e−2(t−a5) t ∈ [12, 16), t ≥ a5

0 t ∈ [16, 24)

(32)

This model for D(t) represents a time shifted ex-
ponential decay for the rate of glucose influx, where
a is the randomly distributed peak times within the
interval. A quirk of this model is that it may result in
superposed disturbances. These superposed disturbances
can be thought of as an individual consuming a larger
meal that then sustains them for more time than a single
normal meal. When examining robustness in Sec. V,
we see that this sometimes results in a large glucose
concentration. Figure 5, in the appendix, contains a plot
with a sample distribution of meal disturbances mitigated
by the designed PI control law.

In Fig. 5, meal disturbance signals according to Eq.
32 are mitigated by the PI controller and observer. The
PI controller rapidly dispels of the excess glucose. A
nominal disturbance of 10 mg/dL/min results in a 20
mg/dL increase of the glucose concentration. The PI
controller returns the glucose concentration to Gref = 100
mg/dL in approximately one hour.

V. ROBUSTNESS TO UNCERTAINTY

As stated in Sec. I, the uncertainty of the provided
parameters is 15%. To evaluate the sensitivity of our
insulin delivery system, simulations with our provided
disturbance signal detailed in Sec. IV were run twenty
times. Each iteration featured a variant of the parameters
within the ±15% tolerance and a unique variation of
the disturbance signal. The deviation of each simulation
from average parameters was calculated using the fol-
lowing cost function,

Costi = |p1 − pi1|2 + |p2 − pi2|2 + · · ·
+|p3 − pi3|2 + |n− ni|2 + · · · (33)

+|Gb −Gi
b|2 + |Ib − Iib|2

where the superscript i denotes the parameter value
for a given iteration. The square difference of the cost
function will be zero if the parameter values have no

deviation from the mean parameters specified in Sec. I.
Figure 4 contains an analysis of the twenty simulations
with the maximum and minimum glucose concentrations
measured for a given simulation.

Fig. 4: The simulated maximum and minimum glucose
concentrations and their costs.

Figure 4 can be thought of as the meal habits of
a certain individual over the course of twenty days.
Even with a high cost function output, such as 200, the
PI controller maintains maximum and minimum values
of 120 mg/dL and 80 mg/dL. These values are within
the accepted range. There are however, a few outliers.
When the maximum glucose concentration achieved 135
mg/dL an inspection of the corresponding D(t) behavior
revealed the superposition of multiple meal disturbances.

VI. CONCLUSION

Insulin delivery systems are crucial to the regulation
of blood glucose concentration for individuals who are
unable to produce their own insulin. The proposed
PI control system is robust to almost any magnitude
of glucose influx, making it a reasonable solution for
commercial use. Our stability analysis suggests a real
world system could have a lag of up to 2.5 seconds.
However, this control system is computationally expen-
sive. Making it potentially costly to implement on an
insulin pump microprocessor. This could also result in a
short battery lifetime, becoming an inconvenience to the
user. Forgoing the observer would reduce computational
expense and may produce a more feasible control law
for patient use.
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VII. APPENDIX

(a) Controlled time response of G(t), X(t), and I(t). Plotted
over the course of twenty-four hours (1440 mins).

(b) Insulin delivery rate (top) and meal disturbance signal
(bottom).

Fig. 5: Time response of the glucose-insulin dynamics
with PI controller and observer.

Fig. 6: Output of MATLAB’s margin() on Open-Loop
Gain
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