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1 Objectives
The CrazyFlie 2.1 is a small 33 g quadcopter. We seek to design a control system to achieve
the following objectives:

• Take off and hover
• Land?
• Danforth aerial supremacy

We design a pole-placement controller in the form,

u = K(r − x̂) (1)
v =M(u) (2)

where,

• u is the controller output vector.
• K is the gain matrix mapping state errors to state inputs.
• x̂ is the estimated state of the drone.
• r is the setpoint vector.
• M is the mixer function.
• v is the PWM vector (32-bit unsigned integers from 0 to 65,536).

The controller will be implemented to track a setpoint defined in the ENU frame as,[
px py pz ṗx ṗy ṗz

]
=

[
0 0 0.5 0 0 0

]
where the states are in [m] and [m/s]. The controller is design to output the following in SI
units,

u =
[
Z L M N

]
where Z is the upward thrust [N], L is the rolling moment [N·m], M is the pitching moment
[N·m], and N is the yawing moment [N·m]. The mixer will be designed to convert the above
controller outputs to PWM using the following empirical quadratic relationship,

thrust = 0.091492681f · PWM2 + 0.067673604f · PWM (3)

The drone’s inertia matrix in the body frame is given as the following,

I =

16.571710 0.830806 0.718277
0.830806 16.655602 1.800197
0.718277 1.800197 29.261652

 · 10−6 (4)

which is given in [kg·m2]. Notably, the cross terms are much smaller than the diagonal terms.
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2 Dynamics
To begin designing a control system, we must first understand the nonlinear dynamics. The
combined nonlinear equations of motions describing the drone dynamics are shown below,ṗxṗy

ṗz

 =

cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

u
v
w


 u̇
v̇
ẇ

 =

rv − qw
pw − ru
qu− pv

+
1

m

 0
0

Z −mg

 ,

ϕ̇

θ̇

ψ̇

 =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ

0 sinϕ
cos θ

cosϕ
cos θ

pq
r


ṗq̇
ṙ

 =

 Γ1pq − Γ2qr
Γ5pr − Γ6(p

2 − r2)
Γ7pq − Γ1qr

+

Γ3L+ Γ4N
1
Jy
M

Γ4L+ Γ8N


The dynamics are comprised of 12 states representing the following quantities,

• px - x position in the earth frame [m]
• py - y position in the earth frame [m]
• pz - z position in the earth frame [m]
• u - x velocity in the body frame [m]
• v - y velocity in the body frame [m]
• w - z velocity in the body frame [m]
• ϕ - roll angle [rads]
• θ - pitch angle [rads]
• ψ - yaw angle [rads]
• p - rolling rate [rads/s]
• q - pitching rate [rads/s]
• r - yawing rate [rads/s]

The CrazyFlie 2.1 is able to report estimates of the above states (although requiring a rotation
transform for the u, v, w states) using a Kalman filter.

3 Linearization
That’s a crazy nonlinear system, I guess this is where we give up. WRONG. To derive
approximate dynamics, we find the Jacobian of the system and evaluate at the setpoint. The
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resulting linearized A and B matrices are shown below,

A =



0 0 0 1.0 0 0 0 0 0 0 0 0
0 0 0 0 1.0 0 0 0 0 0 0 0
0 0 0 0 0 1.0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.0 0 0
0 0 0 0 0 0 0 0 0 0 1.0 0
0 0 0 0 0 0 0 0 0 0 0 1.0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



(5)

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1.0
m

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 − 1.0 Jzz

Jxz
2−1.0 Jxx Jyy

0 − 1.0 Jxz
Jxz

2−1.0 Jxx Jyy

0 0 1
Jyy

0

0 − 1.0 Jxz
Jxz

2−1.0 Jxx Jyy
0 − 1.0 Jxx

Jxz
2−1.0 Jxx Jyy



(6)

The above linearized system can then be used to derive the trim controls. To simplify the
analysis even further, we recognize that the cross terms for the angular rates are much smaller
than the diagonal terms. We then neglect the cross terms and find that B becomes,

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1.0
m

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 − 1

Jxx
0 0

0 0 − 1
Jyy

0

0 0 0 − 1
Jzz



(7)
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3.1 Controllability of Design

The quadcopter control system we are designing is inherently underactuated. The drone only
has 4 inputs: thrust in the z-direction and 3 torques. The full dynamics, however, consists
of 12 states. We find the controllability matrix as,

Wc =
[
B AB · · · An−1B

]
From this computation, we find that rank(Wc) = 8. Thus, the linearized system is not

fully controllable in all 12 states. However, the system is controllable in the most critical
subspaces. In particular, the controllable states consists of vertical position, vertical velocity,
attitudes, and angular rates. The horizontal positions are stabilizable by controlling the
attitude and the horizontal velocities are stabilizable by controlling angular rate.

Linearization and the controllability analysis where complete using the Matlab code in
Listing 1.

Listing 1: MATLAB linearization and controllability.
1 clc; clear; close all;
2
3 syms pn pe pd u v w phi theta psi p q r Z L M N mass g
4 syms J_xx J_xy J_xz J_yx J_yy J_yz J_zx J_zy J_zz
5
6 J = [J_xx, J_xy, J_xz; J_yx, J_yy, J_yz; J_zx, J_zy, J_zz];
7 gammas_vector = inertia_matrix(J);
8
9 [A, B] = make_dynamics_for_paper(u,v,w,phi,theta,psi,p,q,r,Z, L, M, N, mass, g, gammas_vector, J);

10 JA = vpa(jacobian(A, [pn pe pd u v w phi theta psi p q r]));
11 JA = vpa(subs(JA,[pn pe pd u v w phi theta psi p q r], [ 0 0 0.5 0 0 0 0 0 0 0 0 0]))
12 JB = vpa(subs(JB,[mass J_xx J_xy J_xz J_yx J_yy J_yz J_zx J_zy J_zz], [33 16.571710 0.830806 0.718277 0.830806

16.655602 1.800197 0.718277 1.800197 29.261652]))
13 W_c = ctrb(JA, JB)
14 rank(W_c)
15 function [xdotA, xdotB] = make_dynamics_for_paper(u, v, w, phi, theta, psi, p, q, r, fz, l, m, n, mass, g, gamma,

inertia)
16 position = [w*(sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta)) − v*(cos(phi)*sin(psi) − cos(psi)*sin(phi)*

sin(theta)) + u*cos(psi)*cos(theta);...
17 v*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta)) − w*(cos(psi)*sin(phi) − cos(phi)*sin(psi)*

sin(theta)) + u*cos(theta)*sin(psi);...
18 w*cos(phi)*cos(theta) − u*sin(theta) + v*cos(theta)*sin(phi)];
19
20 velocityA = [r*v − q*w;...
21 p*w − r*u;...
22 q*u − p*v];
23
24 velocityB = [0;0;fz/mass − g];
25
26 angle = [p + r*cos(phi)*tan(theta) + q*sin(phi)*tan(theta);...
27 q*cos(phi) − r*sin(phi);...
28 (r*cos(phi)/cos(theta)) + (q*sin(phi)/cos(theta))];
29
30 [rateA, rateB] = angular(p,q,r,l,m,n,gamma,inertia);
31
32 xdotA = [position; velocityA; angle; rateA];
33 xdotB = [zeros(3,1); velocityB; zeros(3,1); rateB];
34 end
35
36 % angular rate
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37 function [A,B] = angular(p,q,r,l,m,n,gamma,inertia)
38 Jy = inertia(2,2);
39 g1 = gamma(1);
40 g2 = gamma(2);
41 g3 = gamma(3);
42 g4 = gamma(4);
43 g5 = gamma(5);
44 g6 = gamma(6);
45 g7 = gamma(7);
46 g8 = gamma(8);
47
48 A = [g1*p*q − g2*q*r;...
49 g5*p*r − g6*(p^2 − r^2);...
50 g7*p*q − g1*q*r];
51
52 B = [g3*l + g4*n;...
53 (1/Jy)*m;...
54 g4*l + g8*n];
55
56 end
57
58 % rotational dynamics
59 function gammas_vector = inertia_matrix(J)
60 Jx = J(1,1);
61 Jy = J(2,2);
62 Jz = J(3,3);
63 Jxz = J(1,3);
64
65 gamma = Jx*Jy − Jxz^2;
66
67 gamma_1 = Jxz*(Jx − Jy + Jz)/gamma;
68 gamma_2 = (Jz*(Jz − Jy) + Jxz^2)/gamma;
69 gamma_3 = Jz/gamma;
70 gamma_4 = Jxz/gamma;
71 gamma_5 = (Jz − Jx)/Jy;
72 gamma_6 = Jxz/Jy;
73 gamma_7 = ((Jx − Jy)*Jx + Jxz^2)/gamma;
74 gamma_8 = Jx/gamma;
75
76 gammas_vector = [gamma_1, gamma_2, gamma_3, gamma_4, gamma_5, gamma_6, gamma_7, gamma_8];
77 end

4 Trim Controls
The trim controls are then expressed as,

p̈z = RENU
p ẇ = RENU

p

(
Z

m
− g

)
(8)

ϕ̈ = ṗ =
L

Jxx
(9)

θ̈ = q̇ =
M

Jyy
(10)

ψ̈ = ṙ =
N

Jzz
(11)

The units for Z,L,M, and N are then [N], [N·m], [N·m], [N·m], and [N·m].
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5 Cascaded PID/PD Control System
The cascaded PID/PD control system we seek to design involves PID in the outer loop to
prevent drift due to position errors and a faster PD control system in the inner loop to
control attitude errors. The cascaded PID/PD control system is a good balance between
computational efficiency, ease of gain tuning, and robustness. The ease of gain tuning is an
especially important metric because I have never tuned a quadcopter control system. The
cascaded PID/PD separates fast attitude control from slower position control, which can
make tuning the gains a bit more tractable. The cascaded approach is used for the rolling
and pitching moments. However, single PD loops are used for the thrust and yawing moment.
This variation in the control design is advisable because the yaw and thrust are naturally
decoupled from the rolling and pitching moments. For Z thrust control, the steady-state
error is mitigated by gravity, so integral control is not necessary.

Additionally, for a controlled indoor environment, such as Green 1157, disturbances are
small and low-frequency, so a cascaded PID/PD control design should at least somewhat work
for stable hovering. Cascaded PID/PD can struggle to keep up with aggressive maneuvers due
to potential inner loop lagging. Fortunately, hovering at 0.5 m should not involve aggressive
maneuvers. Slow drift could actually be a huge issue for the CrazyFlie 2.1 due to its pathetic
battery life and questionable state estimation, which is the primary reason for the integral
control.

Finally, model-based optimization is generally a recommended strategy when computa-
tionally permitted. If I had wanted to suffer slightly more, I would’ve replaced the inner PD
loop with LQR for optimal attitude control...next time!

5.1 Control Design

The single PD controller for the Z thrust is expressed as,

Z = mg + kpzez + kdz ėz

= mg + kpz(pzc − p̂z) + kdz ˙̂pz

where kpz and kdz are the proportional and derivative gains respectively. Similarly, the single
PD controller for the N yawing moment is expressed as,

N = kpψeψ + kdψėψ

= kpψψ̂ + kdψr̂

where kpψ and kdψ are the proportional and derivative gains respectively. The cascaded
PID/PD controller for the L rolling moment is expressed as,

L = kpϕeϕ + kdϕėϕ

= kpϕ(ϕc − ϕ̂) + kdϕp̂

= kpϕ

(
kpyp̂y + kiy

∫
p̂ydy + kdy ˙̂py − ϕ̂

)
+ kdϕp̂
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where kpy, kiy, kdy are the proportional, integral, and derivative gains for the outer PID loop
and kpϕ and kdϕ are the proportional and derivative gains for the inner PD loop. Similarly,
the cascaded PID/PD controller for the M pitching moment is expressed as,

M = kpθeθ + kdθėθ

= kpθ(θc − θ̂) + kdθq̂

= kpθ

(
kpxp̂x + kix

∫
p̂xdx+ kdx ˙̂px − θ̂

)
+ kdθq̂

where kpx, kix, kdx are the proportional, integral, and derivative gains for the outer PID loop
and kpθ and kdθ are the proportional and derivative gains for the inner PD loop.

5.2 Gain Selection

Gain relationships are derived from the closed-loop transfer functions. For the thrust, these
gains are selected in the following form,

kpz = mω2
nz kdz = m2ζzωnz

where ωn is the bandwidth and ζ is the damping coefficent. Gains for the torques, either
single loop or inner loop, are selected as follows,

kpϕ = Jxxω
2
nϕ kdϕ = Jxx2ζϕωnϕ

kpθ = Jyyω
2
nθ kdθ = Jyy2ζθωnθ

kpψ = Jzzω
2
nψ kdψ = Jzz2ζψωnψ

Gains for the outer PD loops are selected in the following form,

kpx = ω2
nx/g kix = ω3

nx/g kdx = 2ζxωnx/g

kpy = ω2
ny/g kiy = ω3

ny/g kdy = 2ζyωny/g

Gains are then selected by tuning the bandwidth and damping coefficient (within reasonable
bounds dictated by hardware limitations).

5.3 Control System Architecture

Figures 2, 3, 4, & 5 contain block diagrams of the control system architecture. Note, that
after each computation of the input signal, a motor transfer function of the form,

H(z) =
7.234537× 10−8

1− 0.9695404z−1
(12)

7



Ian Snider CrazyFlie 2.1 Control System
ESE 4481

May 22, 2025

must be applied. This discrete time transfer function normalizes the thrust, so a scaling
factor must also be applied. Additionally, the transfer function is sufficiently approximated
in continuous time as,

H(s) =
10

s+ 10
(13)

Bode diagrams of the motor transfer functions are shown in Fig. 1.

Figure 1: Bode comparison of H(z) and H(s) approximation.

Importantly, Fig. 1 shows that the H(z) and H(s) approximation both correspond to
a phase of 45◦ at approximately 10 rad/s and achieve similar gain magnitudes. Figure 2
contains the block diagram for the Z single PD loop.
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Figure 2: Z (thrust) single PD loop block diagram.

A constant input signal of pzc = 0.5 is applied to achieve tracking of the setpoint. Tustin’s
transform is used for discrete-time integration. Figure 3 contains the block diagram for the
L cascaded PID/PD controller.

Figure 3: L (rolling moment) cascaded PID/PD block diagram.

The rolling moment controller tracks a setpoint command of pyc = 0. The small angles
approximation of sinϕ ≈ ϕ is used to achieve p̈y = gϕ when transferring from the inner to
outer loop. Figure 4 contains the block diagram for the M cascaded PID/PD controller.

Figure 4: M (pitching moment) cascaded PID/PD block diagram.

The pitching moment controller tracks a setpoint command of pxc = 0. Again, the small
angles approximation of sin θ ≈ θ is used to achieve p̈x = gθ when transferring from the inner
to outer loop. Fig. 5 contains the block diagram for the N single PD loop.
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Figure 5: N (yawing moment) single PD loop block diagram.

The yawing moment controller tracks a setpoint command of ψc = 0. The cascaded
PID/PD controller was implemented in Matlab using the code in Listing 2. Note that some
modifications were added to simulate derivative filtering in addition to the above architecture.

Listing 2: MATLAB cascaded PID/PD controller.
1 function [Z, L, M, N, integral_x, integral_y] = PID_controller(integral_x, integral_y, x, ref, m, g, filtered)
2 Jxx = 16.571710 * 1e−6;
3 Jyy = 16.655602 * 1e−6;
4 Jzz = 29.261652 * 1e−6;
5 dt = 0.002; % 500 Hz sampling rate
6
7 % Z (force in z)
8 zeta_z = 1.0;
9 w_n_z = 3.0;

10 % Gains
11 k_pz = m*w_n_z^2;
12 k_dz = m*2*zeta_z*w_n_z;
13
14 % L−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 zeta_roll = 1.2;
16 w_n_roll = 3.0;
17
18 % inner loop gains
19 k_pphi = Jxx*w_n_roll^2;
20 k_dphi = Jxx*2*zeta_roll*w_n_roll;
21 % outer loop gains
22 zeta_y = 1.8;
23 w_n_y = 0.4;
24
25 k_py = 0.2;
26 k_iy = 0.1;
27 k_dy = 0.1;
28
29 % M−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 zeta_pitch = 1.5;
31 w_n_pitch = 3.0;
32 % Gains
33 k_ptheta = Jyy*w_n_pitch^2;
34 k_dtheta = Jyy*2*zeta_pitch*w_n_pitch;
35 % outer loop gains
36 zeta_x = 1.8;
37 w_n_x = 0.4;
38
39 k_px = 0.2;
40 k_ix = 0.1;
41 k_dx = 0.1;
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42
43 % N−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 zeta_yaw = 1.2;
45 w_n_yaw = 2.5;
46 % Gains
47 k_ppsi = Jzz*w_n_yaw^2;
48 k_dpsi = Jzz*2*zeta_yaw*w_n_yaw;
49
50
51
52 % errors
53 e_x = ref(1) − x(1);
54 e_y = ref(2) − x(2);
55 e_z = ref(3) − x(3);
56 e_vx = ref(4) − x(4);
57 e_vy = ref(5) − x(5);
58 e_vz = ref(6) − x(6);
59
60 integral_x = integral_x + e_x*dt;
61 integral_y = integral_y + e_y*dt;
62
63 N_filter = 10; % derivative filtering
64 alpha = N_filter*dt / (1 + N_filter*dt);
65 filtered.e_vx_filtered = (1 − alpha)*filtered.e_vx_filtered + alpha *e_vx;
66 filtered.e_vy_filtered = (1 − alpha)*filtered.e_vy_filtered + alpha *e_vy;
67
68 % commanded angles
69 theta_c = k_px*e_x + k_ix*integral_x + k_dx*filtered.e_vx_filtered;
70 phi_c = −(k_py*e_y + k_iy*integral_y + k_dy*filtered.e_vy_filtered);
71
72 % Z thrust
73 Z = m*g + k_pz*e_z + k_dz*e_vz;
74
75 % Current states
76 phi = x(7);
77 theta = x(8);
78 psi = x(9);
79 p = x(10);
80 q = x(11);
81 r = x(12);
82
83 % attitude errors
84 e_phi = phi_c − phi;
85 e_theta = theta_c − theta;
86 e_psi = 0 − psi;
87
88 % angular rate errors
89 e_p = 0 − p;
90 e_q = 0 − q;
91 e_r = 0 − r;
92
93 % torque'n it
94 L = k_pphi*e_phi + k_dphi*e_p;
95 M = k_ptheta*e_theta + k_dtheta*e_q;
96 N = k_ppsi*e_psi + k_dpsi*e_r;
97 end
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6 Simulated Stability Analysis
Tuning the cascaded PID/PD controller is still somewhat confusing and frustrating. We need
to ensure that the bandwidth of the inner loop is much greater than the bandwidth of the
outer loop to avoid phase lag. The inner loop must react quickly to attitude changes, while
the outer loop should have a more delayed response to deal with steady-state position errors.
Additionally, a few modifications to the outer loop PIDs were made to achieve the desired
stability margins >6 dB of gain margin and > 45◦ of phase margin.

6.1 Z (Thrust) Controller

The open-loop transfer function at the plant input is expressed as,

Loz =
kdzs+ kpz
ms2

· 10

s+ 10
(14)

The additional 10/(s+10) term is the motor transfer function. Figure 6 contains the stability
margins and Nyquist diagram for the Z single PD loop controller.

(a) Z Bode diagram. (b) Z Nyquist diagram.

Figure 6: Z single loop PD frequency analysis.

The resulting gain margin for the controller is −∞ which implies that the gain could be
infinitely decreased without affecting stability. The infinite gain margin also means that an
incorrect gain could still stabilize the system. The resulting phase margin is 46◦, which is
just above the desired margin of > 45◦. These values were achieved with ωn = 3 rads/s and
ζ = 1.0 (critical damping).
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6.2 L (Rolling Moment) Controller

The open-loop transfer function for the inner loop at the plant input is expressed as,

Loϕ,inner =
kdϕs+ kpϕ
Jxxs2

· 10

s+ 10
(15)

The PD expression will essentially be the same for all PD loops aside from the gain adjust-
ment. Figure 7 contains the stability margins and Nyquist diagram for the L inner loop PD
controller.

(a) L inner loop Bode diagram. (b) L inner loop Nyquist diagram.

Figure 7: L inner loop PD frequency analysis.

The gain margin is again −∞ and the phase margin is just above the desired > 45◦.
These values were achieved with ωn = 3 rads/s and ζ = 1.2 (overdamped). The open-loop
transfer function for the outer loop at the plant input is expressed as,

Loϕ,outer = g
kdys

2 + kpys+ kiy
s(1 + s/N)

· Loϕ,inner(I + Loϕ,inner)
−1 (16)

here, N is a filtering coefficient added for applying a low-pass filter to the derivative term.
This derivative filter was needed due to instability from amplifying errors in the PID. Figure
8 contains the stability margins and Nyquist diagram for the L outer loop PID controller.
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(a) L outer loop Bode diagram. (b) L outer loop Nyquist diagram.

Figure 8: L outer loop PID frequency analysis.

The resulting gain margin for the PID is 7.33 dB which is just above the desired > 6 dB.
The phase margin for the PID is 53.3◦. These margins are volatile and sensitive to small
changes in ωn and ζ which means these values may not translate to the hardware very well.
Additionally, tuning via setting a bandwidth and damping coefficient became cumbersome,
so the gains for kpy, kiy, and kdy were manually tuned.

6.3 M (Pitching Moment) Controller

The open-loop transfer function for the inner loop at the plant input is expressed as,

Loθ,inner =
kdθs+ kpθ
Jyys2

· 10

s+ 10
(17)

Figure 9 contains the stability margins and Nyquist diagram for the M inner loop PD con-
troller.

14



Ian Snider CrazyFlie 2.1 Control System
ESE 4481

May 22, 2025

(a) M inner loop Bode diagram. (b) M inner loop Nyquist diagram.

Figure 9: M inner loop PD frequency analysis.

The gain margin is again −∞ and the phase margin is just above the desired > 45◦.
These values were achieved with ωn = 3 rads/s and ζ = 1.2 (overdamped). Using the
same bandwidth and damping for both the rolling and pitching moments helps to maintain
symmetry in the system. The difference in the moments of inertia is close to negligible. The
open-loop transfer function for the M outer loop at the plant input is expressed as,

Loθ,outer = g
kdxs

2 + kpxs+ kix
s(1 + s/N)

· Loθ,inner(I + Loθ,inner)
−1 (18)

Here, we once again add a low-pass derivative filter to reduce amplification of PID instabil-
ities. Figure 10 contains the stability margins and Nyquist diagram for the M outer loop
PID controller.

(a) M outer loop Bode diagram. (b) M outer loop Nyquist diagram.

Figure 10: M outer loop PID frequency analysis.
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The gain margin for the PID is 6.76 dB which just barely clears the desired margin.
The phase margin is 56.3◦. These values were once again achieved by manually tuning the
position error gains kpx, kix, and kdx.

6.4 N (Yawing Moment) Controller

The open-loop transfer function at the plant input is expressed as,

Loψ =
kdψs+ kpψ
Jzzs2

· 10

s+ 10
(19)

Figure 11 contains the stability margins and Nyquist diagram for the N single PD loop
controller.

(a) N Bode diagram. (b) N Nyquist diagram.

Figure 11: N single loop PD frequency analysis.

The resulting gain margin for the controller is, again, −∞. The resulting phase margin is
50.8◦, which achieves the desired margin of > 45◦. These values were achieved with ωn = 2.5
rads/s and ζ = 1.2 (overdamping). The complete stability analysis Matlab code is contained
in Listing 3.

Listing 3: MATLAB tuning process.
1 clc; clear; close all;
2
3 m = 0.033; % mass
4 g = 9.81;
5 Jxx = 16.571710 * 1e−6;
6 Jyy = 16.655602 * 1e−6;
7 Jzz = 29.261652 * 1e−6;
8
9

10
11 % Z (force in z)
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12 zeta_z = 1.0;
13 w_n_z = 3.0;
14 % Gains
15 k_pz = m*w_n_z^2
16 k_dz = m*2*zeta_z*w_n_z
17
18 % OL TF (plant input)
19 s = tf('s');
20 OLz = (k_dz*s + k_pz)/(m*s^2) * 10/(s+10);
21
22 [Gm, Pm] = margin(OLz);
23 disp('Gain Margin (dB):'); disp(20*log10(Gm));
24 disp('Phase Margin (deg):'); disp(Pm);
25 figure();
26 margin(OLz);
27 grid on;
28 box on;
29 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'b')
30 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
31 title('Z Single Loop PD Bode Diagram',fontsize=16)
32 figure()
33 nyquist(OLz);
34 grid on;
35 box on;
36 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'b')
37 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
38 title('Z Single Loop PD Nyquist Diagram',fontsize=16)
39
40 %%
41 z = tf('z',1/500);
42 H = 65536*(7.2345374e−8)/(1 − 0.9695401*z^−1)/0.09;
43 figure()
44 bode(H)
45 hold all;
46 s = tf('s');
47 G = 10/(s + 10);
48 bode(G)
49 legend('H(z)','H(s)',fontsize=16)
50
51 %%
52 % L (rolling moment)
53 clc;
54 zeta_roll = 1.2;
55 w_n_roll = 3.0;
56
57 % inner loop gains
58 k_pphi = Jxx*w_n_roll^2
59 k_dphi = Jxx*2*zeta_roll*w_n_roll
60
61 % OL TF (inner loop)
62 s = tf('s');
63 OLL = (k_pphi + k_dphi*s)/(Jxx*s^2) * 10/(s+10);
64
65 [Gm, Pm] = margin(OLL);
66 disp('Gain Margin (dB):'); disp(20*log10(Gm));
67 disp('Phase Margin (deg):'); disp(Pm);
68 figure();
69 margin(OLL);
70 grid on;
71 box on;
72 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'g')
73 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
74 title('L Inner Loop PD Bode Diagram',fontsize=16)
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75 figure()
76 nyquist(OLL);
77 grid on;
78 box on;
79 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'g')
80 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
81 title('L Inner Loop PD Nyquist Diagram',fontsize=16)
82
83 %%
84 clc;
85 % outer loop gains
86 zeta_y = 0.8;
87 w_n_y = 1.4;
88
89
90 % k_py = w_n_y^2 / g
91 % k_iy = w_n_y^3 / (10*g)
92 % k_dy = 2*zeta_y*w_n_y / g
93 k_py = 0.2
94 k_iy = 0.1
95 k_dy = 0.1
96 N = 10;
97
98 % OL TF (outer loop)
99 CLL = minreal(OLL*inv(1 + OLL));

100 PID_tf = g*(k_dy*s^2 + k_py*s + k_iy) / (s*(1 + s/N)); % derivative filtering was necessary
101 OLy = PID_tf*CLL/s;
102
103 [Gm, Pm] = margin(OLy);
104 disp('Gain Margin (dB):'); disp(20*log10(Gm));
105 disp('Phase Margin (deg):'); disp(Pm);
106 figure();
107 margin(OLy);
108 grid on;
109 box on;
110 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'm')
111 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
112 title('L Outer Loop PID Bode Diagram',fontsize=16)
113 figure()
114 nyquist(OLy);
115 grid on;
116 box on;
117 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'm')
118 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
119 title('L Outer Loop PID Nyquist Diagram',fontsize=16)
120
121
122 %%
123
124 % M (pitching moment)
125 clc;
126 zeta_pitch = 1.5;
127 w_n_pitch = 3.0;
128 % Gains
129 k_ptheta = Jyy*w_n_pitch^2
130 k_dtheta = Jyy*2*zeta_pitch*w_n_pitch
131
132 % OL TF
133 s = tf('s');
134 OLM = (k_ptheta + k_dtheta*s)/(Jyy*s^2) * 10/(s + 10);
135
136
137 [Gm, Pm] = margin(OLM);
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138 disp('Gain Margin (dB):'); disp(20*log10(Gm));
139 disp('Phase Margin (deg):'); disp(Pm);
140 figure();
141 margin(OLM);
142 grid on;
143 box on;
144 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'g')
145 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
146 title('M Inner Loop PD Bode Diagram',fontsize=16)
147 figure()
148 nyquist(OLM);
149 grid on;
150 box on;
151 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'g')
152 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
153 title('M Inner Loop PD Nyquist Diagram',fontsize=16)
154
155 %%
156 clc;
157 % outer loop gains
158 zeta_x = 0.9;
159 w_n_x = 3.0;
160
161 % k_px = w_n_x^2 / (g)
162 % k_ix = w_n_x^3 / (g)
163 % k_dx = 2*zeta_x*w_n_x / (g)
164 k_px = 0.2
165 k_ix = 0.1
166 k_dx = 0.1
167 N = 10;
168
169 % OL TF (outer loop) (g = 9.81)
170 CLM = minreal(OLM*inv(1 + OLM));
171 % OLx = g*(k_px*s + k_ix + k_dx*s^2)/s^3 * CLM/s;
172 PID_tf = g*(k_dx*s^2 + k_px*s + k_ix) / (s*(1 + s/N)); % derivative filtering was necessary
173 OLx = PID_tf*CLM/s;
174
175
176 [Gm, Pm] = margin(OLx);
177 disp('Gain Margin (dB):'); disp(20*log10(Gm));
178 disp('Phase Margin (deg):'); disp(Pm);
179 figure();
180 margin(OLx);
181 grid on;
182 box on;
183 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'm')
184 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
185 title('M Outer Loop PID Bode Diagram',fontsize=16)
186 figure()
187 nyquist(OLx);
188 grid on;
189 box on;
190 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'm')
191 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
192 title('M Outer Loop PID Nyquist Diagram',fontsize=16)
193
194
195 %%
196
197 % N (yawing moment)
198 clc;
199 zeta_yaw = 1.2;
200 w_n_yaw = 2.5;
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201 % Gains
202 k_ppsi = Jzz*w_n_yaw^2
203 k_dpsi = Jzz*2*zeta_yaw*w_n_yaw
204
205
206 % OL TF
207 s = tf('s');
208 OLN = (k_ppsi + k_dpsi*s)/(Jzz*s^2) * 10/(s+10);
209
210 [Gm, Pm] = margin(OLN);
211 disp('Gain Margin (dB):'); disp(20*log10(Gm));
212 disp('Phase Margin (deg):'); disp(Pm);
213 figure();
214 margin(OLN);
215 grid on;
216 box on;
217 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'b')
218 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
219 title('N Single Loop PD Bode Diagram',fontsize=16)
220 figure()
221 nyquist(OLN);
222 grid on;
223 box on;
224 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'b')
225 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
226 title('N Single Loop PD Nyquist Diagram',fontsize=16)

7 Simulated Step Response
Figure 12 contains the simulated 0.5 m step response of the drone.

Figure 12: Simulated pz step response of the drone.
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The step response was simulated at 0.5 m using the cascaded PID/PD control system
with the same gains from the stability analysis. The initial CrazyFlie 2.1 state estimation was
imperfect, often with 0.5◦ to 1◦ of deviation. To simulate the effect of these imperfections, a
small disturbance was applied to the initial conditions. Figure 13 contains the resulting px
and py drift from deviations in the initial condition.

(a) px response. (b) py response.

Figure 13: Horizontal drift due to deviation in initial conditions.

Figure 13 demonstrates the unsuccessful control of the px and py drift. Adding and
tuning the PID significant improved the drift rate, but was unable to completely mitigate
the steady-state error. The Matlab step response program is contained in Listing 4.

Listing 4: MATLAB step response analysis.
1 % tune gains and define trim controls
2 clc; clear; close all;
3 dt = 1/500; % 500 Hz
4 T = 10;
5 N = T/dt;
6
7 x = zeros(12,1) + [0;0;0;0;0;0;0.01;0.01;0.02;0;0;0];
8
9 ref = [0; 0; 0.5; 0; 0; 0]; % [x y z vx vy vz]

10 mass = 0.033;
11 g = 9.81;
12
13 integral_x = zeros(1,N+1);
14 integral_y = zeros(1,N+1);
15 filtered = struct('e_vx_prev', 0, 'e_vy_prev', 0, ...
16 'e_vx_filtered', 0, 'e_vy_filtered', 0);
17
18 t = 0:dt:T;
19 z_log = zeros(1,N+1); % make log
20 x_log = zeros(1,N+1); % make log
21 y_log = zeros(1,N+1); % make log
22 phi_log = zeros(1,N+1); % make log
23 theta_log = zeros(1,N+1); % make log
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24 psi_log = zeros(1,N+1); % make log
25 pzdot_log = zeros(1,N+1); % make log
26 Z_log = zeros(1,N+1); % make log
27 L_log = zeros(1,N+1); % make log
28 M_log = zeros(1,N+1); % make log
29 N_log = zeros(1,N+1); % make log
30 % simulate
31 for i = 1:1:N
32
33 % storing
34 x_log(i) = x(1);
35 y_log(i) = x(2);
36 z_log(i) = x(3);
37 phi_log(i) = x(7);
38 theta_log(i) = x(8);
39 psi_log(i) = x(9);
40
41
42 [Z, L, M, N, integral_x(i), integral_y(i)] = PID_controller(integral_x(i), integral_y(i), ...
43 x, ref, mass, g, filtered);
44 Z_log(i) = Z;
45 L_log(i) = L;
46 M_log(i) = M;
47 N_log(i) = N;
48
49 % needed states
50 phi = x(7);
51 theta = x(8);
52 psi = x(9);
53 p = x(10);
54 q = x(11);
55 r = x(12);
56
57 % BODY FRAME VELOCITIES
58 R = rotation_matrix(phi, theta, psi);
59 uvw = R'*x(4:6);
60
61
62 % make dynamics
63 xdot = make_dynamics(uvw(1), uvw(2), uvw(3), phi, theta, psi, ...
64 p, q, r, Z, L, M, N);
65
66 % oilurr
67 x = x + xdot*dt;
68 end
69
70 x_log(end) = x(1);
71 y_log(end) = x(2);
72 z_log(end) = x(3);
73
74
75 phi_log(end) = x(7);
76 theta_log(end) = x(8);
77 psi_log(end) = x(9);
78
79
80 figure();
81 plot(t, z_log, 'b','LineWidth',2);
82 xlabel('Time [s]');
83 ylabel('p_z [m]');
84 ylim([−0.1,0.6])
85 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'b')
86 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
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87 title('p_z response',FontSize=16);
88 grid on;
89 box on;
90
91 figure()
92 plot(t, x_log,'r', 'LineWidth',2);
93 xlabel('Time [s]');
94 ylabel('p_x [m]');
95 ylim([−0.1,0.6])
96 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'r')
97 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
98 title('p_x response',fontsize=16);
99 grid on;

100 box on;
101
102 figure()
103 plot(t, y_log,'m','LineWidth',2);
104 xlabel('Time [s]');
105 ylabel('y_x [m]');
106 ylim([−0.1,0.6])
107 xlim([0,10])
108 set(findall(gcf, 'type', 'line'), 'linewidth',2, 'color', 'm')
109 set(findall(gcf, '−property', 'FontSize'), 'FontSize', 14);
110 title('p_y response',fontsize=16);
111 grid on;
112 box on;
113
114 function R = rotation_matrix(phi, theta, psi)
115 Rz = [cos(psi), −sin(psi), 0;
116 sin(psi), cos(psi), 0;
117 0, 0, 1];
118
119 Ry = [cos(theta), 0, sin(theta);
120 0, 1, 0;
121 −sin(theta), 0, cos(theta)];
122
123 Rx = [1, 0, 0;
124 0, cos(phi), −sin(phi);
125 0, sin(phi), cos(phi)];
126
127 R = Rz*Ry*Rx;
128 end

23



Ian Snider CrazyFlie 2.1 Control System
ESE 4481

May 22, 2025

8 The Mixer
The CrazyFlie 2.1 behavior conventions are shown Fig. 14.

(a) Propeller conventions. (b) Drone frames.

Figure 14: CrazyFlie 2.1 conventions.

The mixer is then derived by analyzing the behavior of the drone. Essentially, the desired
behavior is as follows,

M1 thrust = yaw − pitch − roll + z thrust
M2 thrust = pitch − roll − yaw + z thrust
M3 thrust = roll − pitch − yaw + z thrust
M4 thrust = roll − pitch − yaw + z thrust

That is to say, when we apply a Z thrust, all motors should actuate to achieve positive
thrust. When we apply an L roll, M1 and M2 should actuate positively and M3 and M4
should actuate negatively to achieve a positive roll. When we apply an M pitch, M2 and
M3 should actuate positively and M1 and M4 should actuate negatively to achieve a positive
pitch. Finally, when we apply an N yaw, M1 and M3 should actuate positively and M2 and
M4 should actuate negatively to achieve a positive yaw. The normalized mixer matrix is
then expressed as follows,

Mixer =


1 1 1 1
−1 −1 1 1
−1 1 −1 1
1 −1 1 −1

 (20)
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The thrust is then solved for by taking the inverse of the Mixer,
n2
1

n2
2

n2
3

n2
4

 = Mixer−1


Z
L
M
N

 ρCTD5 (21)

where, Mixer−1 = 0.25


1 −1 −1 1
1 −1 1 −1
1 1 1 1
1 1 −1 −1

 (22)

and n2 is the propeller rev/s. Note, that in general, the propeller thrust equation is expressed
in terms of the thrust coefficient, CT , as,

T = ρCTD
5n2 (23)

The density ρ, diameter D5, and CT , however, are contained within the given empirical
normalized PWM equation from Eq. 3. We solve the for the motor PWM signal by simply
using the quadratic formula. Note, however, that we must apply 16 bit unsigned integer of
65,536 to properly scale the PWM signal to the motor.

9 CrazyFlie 2.1 Implementation
The mixer and cascaded PID/PD control system were implemented on the CrazyFlie 2.1
firmware with moderate success. We implemented the mixer and controller by editing the
power_distribution_quadrotor.c and controller_pp.c. The CrazyFlie 2.1 was config-
ured for pole-placement. Several modifications beyond the explained control system architec-
ture were added to the code in an attempt to achieve successful hovering. The Z thrust was
clamped to prevent saturation, which was a huge problem during early testing of the control
system. Angle wrapping was added to mitigate for the excessive initial yaw state errors.
Finally, trim constants were also added to the rolling, pitching, and yawing moments due to
experimental observations. There is was likely a significant imperfection in the quadcopter
IMU that was used. Additionally, the integral terms were constrained to prevent integral
wind-up.

9.1 Mixer

The mixer was implemented to the power_distribution_quadrotor.c by adding the C
functions contained in Listing 5.

Listing 5: Functions added to power_distribution_quadrotor.c.
1 // convert thrust [N] to pwm
2 float thrustToPWM(float thrust) {
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3 // just in case there is for some reason negative thrust
4 // if (thrust <= 0) return 0;
5
6 // quadratic solution for the pwm
7 // float discriminant = pwmToThrustB*pwmToThrustB + 4*pwmToThrustA*thrust;
8 // return (−pwmToThrustB + sqrtf(discriminant))/(2*pwmToThrustA);
9 const float thrust_max = 0.159f; // Max thrust before PWM=1.0

10 if (thrust <= 0) return 0.0f;
11 if (thrust > thrust_max) thrust = thrust_max; // Saturate
12 float discriminant = pwmToThrustB*pwmToThrustB + 4*pwmToThrustA*thrust;
13 return (−pwmToThrustB + sqrtf(discriminant)) / (2*pwmToThrustA);
14 }
15 static void powerDistributionForceTorque(const control_t *control, motors_thrust_uncapped_t* motorThrustUncapped)

{
16 // TODO: put mixer code below
17 // const float mixer[4][4] = {
18 // {1.0f, 1.0f, 1.0f, 1.0f}, // Thrust
19 // {−1.0f, −1.0f, 1.0f, 1.0f}, // Roll
20 // {1.0f, −1.0f, −1.0f, 1.0f}, // Pitch
21 // {1.0f, −1.0f, 1.0f, −1.0f} // Yaw
22 // };
23
24 const float mixer_inv[4][4] = {
25 {0.25f, −0.25f, 0.25f, 0.25f},
26 {0.25f, −0.25f, −0.25f, −0.25f},
27 {0.25f, 0.25f, −0.25f, 0.25f},
28 {0.25f, 0.25f, 0.25f, −0.25f}
29 };
30 float Z = control−>thrustSi;
31 float L = control−>torqueX;
32 float M = control−>torqueY;
33 float N = control−>torqueZ;
34 // float Z = 0.4f; // [N]
35 // float L = 0.0f;
36 // float M = 0.0f;
37 // float N = 0.0f;
38
39 float n[4]; // motor thrusts
40
41 for (int motor = 0; motor < STABILIZER_NR_OF_MOTORS; motor++) {
42 n[motor] = mixer_inv[motor][0]*Z + mixer_inv[motor][1]*L + mixer_inv[motor][2]*M + mixer_inv[motor][3]*N;
43
44 // convert thrust to normalized PWM
45 float pwm_normalized = thrustToPWM(n[motor]);
46
47 // scale PWM
48 uint16_t pwm_absolute = (uint16_t)(pwm_normalized*UINT16_MAX);
49 motorThrustUncapped−>list[motor] = pwm_absolute;
50
51 // safety clamp
52 motorThrustUncapped−>list[motor] = constrain(motorThrustUncapped−>list[motor],0,UINT16_MAX);
53 }
54 }

9.2 Control System

The cascaded PID/PD controller was implemented to the pole-placement controller_pp.c
code by adding the C functions contained in Listing 6.

Listing 6: Functions added to controller_pp.c.
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1 typedef struct {
2 float integral_x;
3 float integral_y;
4 float prev_e_vx; // previous velocity error
5 float prev_e_vy;
6 float filtered_dx; // low−pass derivative filtering
7 float filtered_dy;
8 } PID_State;
9 void controllerPP(control_t *control, const setpoint_t *setpoint,

10 const sensorData_t *sensors,
11 const state_t *state,
12 const stabilizerStep_t stabilizerStep) {
13 // limits controller rate to 500Hz.
14 if (!RATE_DO_EXECUTE(UPDATE_RATE, stabilizerStep)) {
15 return;
16 }
17 // TODO: put your controller code below
18 static PID_State pid = {0};
19 if (setpoint−>mode.z == modeDisable) {
20 // Disarm motors when the drone is on the ground/landed
21 control−>thrustSi = 0.0f;
22 control−>torqueX = 0.0f;
23 control−>torqueY = 0.0f;
24 control−>torqueZ = 0.0f;
25
26 pid.integral_x = 0.0f;
27 pid.integral_y = 0.0f;
28 } else {
29 // // TODO: send command to mixer below
30 // Mass and gravity
31 const float m = 0.033f; // Crazyflie mass in kg
32 const float g = 9.81f;
33 //const float pi = 22.0f/7.0f;
34 const float dt = 0.002f; // 500 Hz update for integral control
35 const float N = 10.0f; // filter coefficient for derivative
36 const float alpha = N*dt / (1.0f + N*dt); // time constant exp smoothing
37
38 const float roll_trim = 0.01f; // 0.02f works pretty well
39 const float pitch_trim = 0.03f; // 0.02f works pretty well
40 const float yaw_trim = 0.02f; // 0.02f works pretty well
41 // const float roll_trim = 0.0f; // 0.02f works pretty well
42 // const float pitch_trim = 0.0f; // 0.02f works pretty well
43 // const float yaw_trim = 0.0f; // 0.02f works pretty well
44
45
46 // Controller constants
47 const float Jxx = 16.571710e−6f;
48 const float Jyy = 16.655602e−6f;
49 const float Jzz = 29.261652e−6f;
50
51 const float zeta_z = 0.7f;
52 // const float zeta_x = 0.8f;
53 // const float zeta_y = 0.8f;
54
55 const float zeta_roll = 2.0;
56 const float zeta_pitch = 1.7f;
57 const float zeta_yaw = 1.5f;
58
59 const float w_n_z = 3.0f; // rads/s
60 // const float w_n_x = 3.0f;
61 // const float w_n_y = 3.0f;
62
63 const float w_n_roll = 6.0f; // a bit of asymmetry was needed (roll oscillations)
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64 const float w_n_pitch = 8.0f;
65 const float w_n_yaw = 6.0f;
66
67 // Position gains
68 const float k_px = 0.2f;
69 const float k_py = 0.2f;
70 const float k_pz = m*w_n_z*w_n_z;
71
72 // Velocity gains
73 const float k_dx = 0.25f;
74 const float k_dy = 0.25f;
75 const float k_dz = m*2.0f*zeta_z*w_n_z*w_n_z;
76
77 // Attitude gains
78 const float k_pphi = Jxx*w_n_roll*w_n_roll;
79 const float k_ptheta = Jyy*w_n_pitch*w_n_pitch;
80 const float k_ppsi = Jzz*w_n_yaw*w_n_yaw;
81
82 // Rate gains
83 const float k_dphi = Jxx*2.0f*zeta_roll*w_n_roll;
84 const float k_dtheta = Jyy*2.0f*zeta_pitch*w_n_pitch;
85 const float k_dpsi = Jzz*2.0f*zeta_yaw*w_n_yaw;
86
87 // adding PID to outer loop cascades for roll and pitch
88 // const float k_ix = w_n_x*w_n_x*w_n_x/(10.0f*g);
89 // const float k_iy = w_n_y*w_n_y*w_n_y/(10.0f*g);
90 const float k_ix = 0.05;
91 const float k_iy = 0.05;
92
93
94
95 // Position errors
96 float e_x = 0.0f − state−>position.x;
97 float e_y = 0.0f − state−>position.y;
98 float e_z = 0.5f − state−>position.z;
99

100 // integral
101 pid.integral_x += e_x*dt;
102 pid.integral_y += e_y*dt;
103
104 // anti−windup
105 pid.integral_x = constrain(pid.integral_x, −0.5f, 0.5f);
106 pid.integral_y = constrain(pid.integral_y, −0.5f, 0.5f);
107
108
109 // Velocity errors
110 float e_vx = 0.0f − state−>velocity.x;
111 float e_vy = 0.0f − state−>velocity.y;
112 float e_vz = 0.0f − state−>velocity.z;
113
114 // derivative filtering
115 pid.filtered_dx = (1.0f − alpha)*pid.filtered_dx + alpha*e_vx;
116 pid.filtered_dy = (1.0f − alpha)*pid.filtered_dy + alpha*e_vy;
117
118
119 // Commanded angles (convert position error to desired attitude)
120 float theta_c = −(k_px*e_x + k_ix*pid.integral_x +k_dx*pid.filtered_dx); //pitch command
121 float phi_c = k_py*e_y + k_iy*pid.integral_y + k_dy*pid.filtered_dy; // roll command
122
123 // Total thrust (Z)
124 control−>thrustSi = constrain(m*g + k_pz*e_z + k_dz*e_vz, 0.1f, 0.5f); // prevent saturated
125
126
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127 // Attitude errors
128 float e_phi = atan2f(sinf(phi_c − state−>attitude.roll),cosf(phi_c − state−>attitude.roll));
129 float e_theta = atan2f(sinf(theta_c − state−>attitude.pitch),cosf(theta_c − state−>attitude.pitch));
130 float e_psi = atan2f(sinf(0 − state−>attitude.yaw),cosf(0 − state−>attitude.yaw));
131
132
133 // Angular rate errors
134 float e_p = 0.0f − sensors−>gyro.x;
135 float e_q = 0.0f − sensors−>gyro.y;
136 float e_r = 0.0f − sensors−>gyro.z;
137
138 // Torques (L, M, N)
139 control−>torqueX = k_pphi*e_phi + k_dphi*e_p − roll_trim;
140 control−>torqueY = −(k_ptheta*e_theta + k_dtheta*e_q) + pitch_trim;
141 control−>torqueZ = −(k_ppsi*e_psi + k_dpsi*e_r) + yaw_trim;
142
143 // // Temporary test code
144 // control−>thrustSi = 0.0f;
145 // control−>torqueX = 0.0f;
146 // control−>torqueY = 0.0f;
147 // control−>torqueZ = 0.0f;
148
149 }
150 control−>controlMode = controlModeForceTorque; // use custom mixer
151 }

10 Results & Discussion
Table 1 contains the final gains and parameters from the Matlab simulation and CrazyFlie
2.1 test flight.

Table 1: Simulation and experimental gains.

Parameter/Gain Simulation CrazyFlie 2.1
kpz [N·rads2/m] 0.297 0.297
kdz [N·rads·s/m] 0.198 0.198
kpϕ [N·m·rads2] 1.4194× 10−4 5.96× 10−4

kdϕ [N·m·rads·s] 1.1932× 10−4 2.98× 10−4

kpθ [N·m·rads2] 1.499× 10−4 1.066× 10−3

kdθ [N·m·rads·s] 1.499× 10−4 3.198× 10−4

kpψ [N·m·rads2] 1.8289× 10−4 1.053× 10−3

kdψ [N·m·rads·s] 1.7557× 10−4 5.267× 10−4

kpx [rads2/m] 0.2 0.2
kix [rads3/m·s] 0.1 0.05
kdx [rads·s/m] 0.1 0.25
kpy [rads2/m] 0.2 0.2
kiy [rads3/m·s] 0.1 0.05
kdy [rads·s/m] 0.1 0.25
Nfilter [rads/s] 10 10
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It’s unlikely that system identification is completely necessary for each individual quad-
copter, but given the small size and cheap components there may be some variation between
models that affects the motor transfer function. Such discrepancies could result in the sig-
nificant tuning differences between the Matlab simulation and experimental implementation.
There are also, of course, numerous assumptions that were made to simplify the dynamics
such as neglecting inertia matrix cross terms. While these terms were small compared to the
diagonal terms, they were likely not completely negligible.

Most challenging, however, was tuning the PID to ensure that the inner loop bandwidth
with approximately 5 to 10× faster than the outer loop bandwidth. The drone was able to
hover at 0.5 m, but there were significant oscillations in the px and py states. Additionally,
there were aggressive roll oscillations occurring at approximately 5 Hz. These oscillations
were attempted to be reduced by increasing the damping coefficient and decreasing the inner
loop bandwidth, but reducing the bandwidth too much caused a phase lag in the cascaded
design. Removing the oscillations caused the quadcopter to drift significantly.

For a future implementation, I would choose an LQR controller to find the optimal posi-
tion error gains for the outer loop. Additionally, tuning an LQR controller likely would have
been simpler and easier, but where is the fun in that? The CrazyFlie 2.1 hardware would
likely be able to handle the computational expense of LQR. LQR would likely reduce the
position steady-state error that plagued the control system. Position steady-state errors were
amplified significantly by oscillations in roll and pitch and would likely have needed faster
actuation to make recovery maneuvers. Limiting the bandwidth of the PID by cascading the
controller in an outer loop was likely not the best idea.

The control design evolved over the course of the project. Originally, my team simply
wanted to implement a cascaded P controller. This design was later expanded to cascaded
PD control. The cascaded PD control was the first instance of successful hovering. However,
I personally, was still dissatisfied with the position error drift and overambitiously decided to
convert the PD outer loop to PID the night before the project deadline. The drone, was able
to fly, but significant tuning improvements could still be made to the drone. Lesson learned.
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